European Ocean Biodiversity Information System

[ report an error in this record ]basket (0): add | show Print this page

The seismic-stratigraphic record of lake-level fluctuations in Lake Challa: Hydrological stability and change in equatorial East Africa over the last 140 kyr
Moernaut, J. ; Verschuren, D.; Charlet, F.; Kristen, I.; Fagot, M.; De Batist, M. (2010). The seismic-stratigraphic record of lake-level fluctuations in Lake Challa: Hydrological stability and change in equatorial East Africa over the last 140 kyr. Earth Planet. Sci. Lett. 290(1-2): 214-223. dx.doi.org/10.1016/j.epsl.2009.12.023
In: Earth and Planetary Science Letters. Elsevier: Amsterdam. ISSN 0012-821X; e-ISSN 1385-013X
Peer reviewed article  

Available in  Authors 
    Vlaams Instituut voor de Zee: Open Marine Archive 229981 [ download pdf ]

Keyword
    Marine/Coastal
Author keywords
    equatorial East Africa; Indian Ocean monsoon; lake level; seismic stratigraphy

Authors  Top 
  • Moernaut, J.
  • Verschuren, D.
  • Charlet, F.
  • Kristen, I.
  • Fagot, M.
  • De Batist, M.

Abstract
    Seismic-reflection data from crater lake Challa (Mt. Kilimanjaro, equatorial East Africa) reveal a ~ 210-m thick sedimentary infill containing distinct seismic-stratigraphic signatures of late-Quaternary lake-level fluctuations. Extrapolation of a well-constrained age model on the cored upper part of the sequence suggests that these lake-level fluctuations represent a detailed and continuous record of moisture-balance variation in equatorial East Africa over the last 140 kyr. This record indicates that the most severe aridity occurred during peak Penultimate glaciation immediately before ~ 128 kyr BP (coeval with Heinrich event 11) and during a Last Interglacial ‘megadrought’ period between ~ 114 and ~ 97 kyr BP; in comparison, Last Glacial Maximum (LGM) aridity was modest. It was preceded by ~ 75 000 years of relatively stable and moist climate conditions interrupted by eleven short-lived dry spells, five of which match the timing of Heinrich events 2 to 6. Climate history near the East African equator reflects variation in the precessional forcing of monsoon rainfall modulated by orbital eccentricity, but precession-driven moisture fluctuations were less extreme than those observed in northern and southern tropical Africa. The near-continuous moist climate from ~ 97 to 20.5 kyr BP recorded in the Lake Challa record contrasts with the trend towards greater aridity after ~ 70 kyr BP documented in equatorial West Africa. This long period of moist glacial climate and a short, relatively modest LGM drought can be attributed to greater independence of western Indian Ocean monsoon dynamics from northern high-latitude glaciation than those in the tropical Atlantic Ocean. This rather persistent moist glacial climate regime may have helped maintain high biodiversity in the tropical forest ecosystems of the Eastern Arc mountains in Tanzania.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors